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Mobility of discrete cavity solitons

O. Egorov, U. Peschel, and F. Lederer
Institute of Condensed Matter Theory and Solid State Optics, Friedrich-Schiller-Universitdit Jena, Max-Wien-Platz 1,
07743 Jena, Germany
(Received 30 June 2005; published 6 December 2005)

We investigate the mobility of discrete cavity solitons in arrays of coupled quadratic nonlinear resonators
driven by an inclined holding beam. Unlike in transversely homogeneous cavities the inherent discreteness
hinders or even prevents the soliton motion. As a consequence for the same system parameters one type of
soliton may still be at rest, whereas others already move. This feature gives rise to collisions between these
different types. To study the soliton dynamics in more detail we take advantage of a perturbation theory and

derive soliton velocities semianalytically.
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I. INTRODUCTION

Recently much emphasis has been on experimentally and
theoretically studying intrinsic light localization in discrete
optical systems, where an array of evanescently coupled
waveguides is a typical example for such a system. The pe-
culiarities of discrete diffraction allow for the formation of
new types of spatially localized solutions, viz, so-called dis-
crete solitons [1], which were predicted in the seminal work
[2] by Christodoulides and co-workers and were later experi-
mentally observed in media with Kerr [3], saturable cubic
[4], and quadratic nonlinearities [5]. Unlike homogeneous
media discrete systems lack translational invariance in the
transverse direction and, as a consequence, an effective trap-
ping potential, the so-called Peierls-Nabarro potential (PNP),
appears [6]. It is a measure of the barrier, which solitons
have to overcome, when moving from site to site. Actually,
the PNP is the difference of the Hamiltonians of two types of
localized solutions of same power, which may exist in dis-
crete systems, namely on-site (“odd”) and intersite (“even”
discrete solitons. The PNP hinders or even completely sup-
presses the discrete soliton’s motion in transverse directions.
Based on this effect some discrete soliton switching schemes
were proposed [7].

Adding feedback and resonant enhancement to the dis-
crete system allows for new degrees of freedom. A possible
implementation is a nonlinear waveguide array with dielec-
tric mirrors at the end faces where radiation losses are com-
pensated for by a driving or pump field (Fig. 1). Feedback
and field enhancement give rise to bi- or multistability of
optical states, where the nonlinear effects require substan-
tially less power to occur compared to a single pass configu-
ration. Recently, the existence of localized solutions in such
an array of coupled nonlinear cavities, i.e., of discrete cavity
solitons (DCS), was predicted both for cubic [8] and qua-
dratic [9] nonlinearities. Actually, for strong coupling be-
tween waveguides DCSs behave like conventional cavity
solitons (CSs) known from homogeneous planar resonators
where canonical (continuous) diffraction takes place (for re-
cent reviews, see [10,11]). In particular, CS may exist on a
stable and preferably flat (plane wave) background and once
excited by a local change of the incident field, in principle,
they stay forever, even if the initial excitation has been
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switched off [12-18]. Moreover, their ability to react upon
external perturbations, e.g., system parameter variations, can
be used to control the position of CSs [19,20]. It was found
that smooth inhomogeneities force the CS to move into the
transverse direction with a velocity proportional to the local
gradient of the corresponding inhomogeneity [19-21]. Un-
like in the transversely homogeneous (continuous) case the
dynamical properties of DCSs [8,9] have not been yet prop-
erly investigated. Due to the lack of translational invariance
it might be anticipated that discreteness appreciably affects
the mobility of DCS as observed in the conservative case.
Recently, moving midband lattice cavity solitons have been
identified but in an active medium and without the holding
beam [22].

The aim of this paper is to investigate the dynamics of
DCS in an array of coupled quadratically nonlinear cavities
when an inclined holding beam is applied. This holding
beam acts like a force triggering a transverse motion. But the
lack of translational symmetry caused by the very discrete-
ness of the system counteracts this force. Thus, in contrast to
the continuous case where cavity solitons start to move for
an arbitrary small inclination, DCS to move require a certain
threshold inclination. Below this threshold DCS just rest at
definite sites in the discrete system. Thus the interplay of
these two effects, namely the holding beam inclination and
the trapping caused by discreteness, will determine the dy-
namics of DCSs.

MIRRORS

OPTICAL

PP CRYSTAL

FIG. 1. Array of evanescently coupled nonlinear cavities driven
by an external field. The PPLN waveguides are coated with highly
reflected Bragg mirrors.
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The paper is organized as follows: In Sec. II we derive the
“continuous limit” of the mean-field equations valid for wide
DCSs and calculate the soliton velocity as it depends on the
holding beam inclination. This continuous model serves as
an approximation to the very discrete one by using the stan-
dard continuous equations but some peculiarities of discrete
diffraction included. Then, in Sec. III, by using this model
for the calculation of zero-order solutions we describe ana-
lytically the critical gradient (threshold) of the holding beam
which triggers transverse soliton motion. It turns out that the
“quasitranslational” mode, which is the discrete analog of the
neutral or translational mode of the continuous model, deter-
mines the dynamics of solitons in the discrete system. In a
next step we show that for identical system parameters one
DCS type may be at rest, whereas others already move. This
feature gives rise to collisions between these different soliton
types. The results of interaction of moving and resting soli-
tons are discussed in Sec. IV.

II. THE MODEL

An experimental study of DCS could rely on a configura-
tion recently used for discrete soliton formation, namely a
periodically poled lithium niobate (PPLN) waveguide array
[5] but coated with highly reflecting Bragg mirrors at the end
faces (see Fig. 1). Typical data of this sample are a length of
10 mm, a channel separation of 10—20 um, and a waveguide
width of 7 um. A rough estimation yields that an input
power of 5 mW per channel at a cavity finesse of about 50 is
sufficient for cavity soliton formation.

We assume that the cavities are resonant for both the fun-
damental frequency (FF) and second harmonic (SH) waves
and that a mean-field approach can be applied. The detailed
derivation of the mean-field model as well as the discussion
of its limits can be found elsewhere [9]. The radiation losses
are compensated for by an external FF driving field. Here,
we restrict ourselves to a quasi-infinite array of identical eva-
nescently coupled high-Q-cavities. The appropriately scaled
evolution equations for the slowly varying envelopes of the
transmitted FF and SH fields read as [9]

du ) " .
zﬁ—; + Ci(Upoy + e — 2u,) + (( + ADu, + uv, = Ege'?",

v,
iE + Cy(V,yo + U,y — 20,) + (i5+ Ay, + uﬁ =0, (1)

where A, are detunings of both fields from the cavity reso-
nance scaled in terms of the resonance width at the FF. The
time 7 is scaled with the FF photon lifetime and J'is the ratio
of the FF/SH photon lifetimes, C,, are the normalized
FF/SH coupling constants. Usually C;> C, holds because in
realistic experimental situations SH field profiles are much
stronger confined compared to FF ones and the correspond-
ing overlap integrals are much less (see for example [5]). We
also allow for an inclination of the holding beam (amplitude
E,) by introducing a phase shift g between the field incident
on adjacent cavities.

For normal incidence (¢=0) the system (1) possesses sta-
tionary localized solutions. Details regarding the properties
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FIG. 2. The FF amplitude profiles (normalized units) of odd and

even bright DCSs for different coupling constants. Ey=11.2, A,
=—5, A2=—6, 521

of these quadratic DCSs can be found in [9], here we only
concisely review the most important features. Like in the
conservative case we may distinguish between two indepen-
dent DCSs, namely odd and even ones (Fig. 2). The scaled
coupling constant C; can vary in a wide range where stron-
ger coupling entails wider DCSs (see Fig. 2). For very large
coupling (C; — o, continuous limit), odd and even DCSs are
identical and cover a large number of cavities.

The primary aim of this paper is to get insight into the
physics of the mobility of DCSs. This can be hardly analyti-
cally achieved in dealing with the discrete set of Eq. (1).
That is why we will take advantage of a continuous model
which is valid for a large coupling constant (C;— ) but
keeps several features of the discrete system. Resulting in
translational symmetry it does not describe completely the
peculiarities of discreteness but it will serve as a starting
point for an analysis of the discrete model (1). In this case
the optical field varies slowly across the array and we can
introduce the continuous transverse coordinate x and func-
tions u(x), v(x), which are by definition envelopes of the
discrete solution of Eq. (1): u(x=nh)=u,, v(x=nh)=v,,
where the separation between adjacent cavities h=1/C, is
assumed to be a small parameter. Thus the following expan-
sion is valid for Cy—%: ) ~u,=hdu+3h*d.u. In this
continuous limit one can replace the set of coupled ordinary
differential equations (1) by two partial differential equations
as

u  Fu * ;
i5+@+(i+Al)u+u v = Ege’™,
v P
i—+a—+ S+ A)v+u’=0, 2
JaT axz ( 2) ( )

where a=C,/Cy and k=q/h is the phase gradient. The sys-
tem (2) is identical to that which describes the evolution of
the transmitted field of a Fabry-Perot cavity filled with a
homogeneous quadratically nonlinear medium. But in con-
trast to that case, where a=0.5 [10,12,13], here this crucial
parameter « can considerably vary, even for strongly coupled
cavities. Thus, only C,,C,— o results in a=0.5. Physically,
it can be anticipated that Eq. (2) provides moving soliton
solutions for any small inclinations of the holding beam but
the varying parameter « reflects still that discrete diffraction
is different for the FF and SH component. Considering this
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effect from a more general point of view one finds that any
spatial variation of a system parameter such as e.g. of the
holding beam or the cavity detuning causes a motion of DCS
in continuous limit (like conventional CS in [20]). This mo-
tion arises from a nonzero projection of the parameter varia-
tion onto the neutral or translational mode of the unperturbed
system [19,20]. This neutral mode provokes translation.
Thus, an excitation of this mode evokes a change in the
position of the soliton. Actually, the velocity of the trans-
verse motion is proportional to the gradient of the perturba-
tion parameter. So, starting from continuous model (2) for
DCSs and considering an inclination of the holding beam as
the relevant parameter, we proceed with solutions of the dis-
crete model (1) later.

III. DYNAMICS OF DISCRETE CAVITY SOLITONS

We use perturbation theory by investigating the influence
of a small inclination of the holding beam to the DCSs
[19,20]. To this end we introduce real-valued quantities and
rewrite Eq. (1) in the following general form:

dru— wl,=p 3)

with u=(...,Re u,,Imu,,Rev,,Imuv,,...). W is a nonlinear
vector functional and p=(...,Exqn,0,0,0,...) is a small
perturbation, induced by the phase shift ¢ of the holding
beam in first-order approximation. Assuming that the pertur-
bation is of order e<<1 and the field scales as u=uy+eu,
+---, we get from Eq. (3) in first order in &,

Jrl| — dy W|u0u1 =P, (4)

where é’uw|u0 is the Jacobian of Eq. (3) obtained by linear-
izing around the stationary solution u,. Expanding the per-
turbation with respect to the basis of eigenvectors of this
Jacobian u;=3,a,(T)¢; we get the following set of evolution
equations for the amplitudes of each eigenvector:

dra(T) = Na(T) = T (5)
where ¢ is the eigenvectors of the adjoined Jacobian

NW

As it was shown above the continuous model (2) is math-
ematically equivalent to the discrete one (1) provided that the
FF coupling constant converges to infinity (C;— ). Due to
the translational symmetry of the continuous model (2) one
of the eigenvectors of auw|u0 is proportional to the spatial
derivative of the stationary solution ¢, =du, and possesses a
zero eigenvalue (\"=0). This is so-called neutral or transla-
tional mode. An excitation of this eigenvector u=uy+adu,
results in a spatial displacement because any solution u,
which is shifted by Ax can be expressed by a Taylor expan-
sion, u(x+Ax)=uy+Axdu. Therefore the amplitude of the
translational mode a,. can be regarded as a spatial shift Ax
and in accordance with Eq. (5) the instantaneous DCSs ve-
locity in the continuous limit is

Y- p

. 6
d’; l/’tr ( )

VO = ﬁTAx =
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FIG. 3. The mobility coefficient ¢ of a bright DCS in the con-
tinuous limit (V= &k, where V) is the soliton velocity for a phase
gradient k of the holding beam). Parameters: (a) A,=—6, =1; (b)
a=0, 6=1; (c) Ay=-6, a=0.

The DCS carries other modes as well, which might be
excited simultaneously. Usually in dissipative systems
[13,19] all eigenvectors but the translational one have eigen-
values with negative real part, thus they are damped expo-
nentially indicating stable stationary solutions. Moreover,
only the translational mode ¢, contributes to a spatial dis-
placement. Therefore we solely concentrate on its excitation.

The expression for the DCS velocity (6) was obtained for
the well studied case of canonical paraxial diffraction
[10,20]. Unlike in this case discrete diffraction laws can
change the mobility properties of DCS even in the continu-
ous limit (2). Here, as a matter of fact, the ratio of diffraction
coefficients of SH and FF fields («) may considerably devi-
ate from @=0.5. For the canonical paraxial diffraction («
=0.5) the inclination of the holding beam can be transformed
away by introducing a constant velocity V,=2k. The very
reason for this is that both the FF and SH beams exhibit the
same refraction properties, i.e., transverse velocities of the
spatial envelopes. But for the general case (a#0.5), the
transverse velocity of the DCS consisting of a FF and SH
component will attain values in an interval set by the two
velocities of FF and SH field, respectively. It will turn out
that DCS mobility strongly depends on the ratio of the am-
plitudes of both harmonics and, therefore, the system param-
eters. Assuming a linear relation Vy=¢&k between a phase
gradient and the velocity the “mobility” coefficient & can be
calculated by means of direct numerical integration of Eq.
(2). (Fig. 3). Indeed, being £=2 for the paraxial case («
=0.5) the mobility coefficient decreases for vanishing SH
diffraction [Fig. 3(a)]. From Fig. 3(b) it is evident that the
bright DCS becomes more mobile for small FF (A;) and
large SH detunings (A,), respectively. In this case the SH
field is weak and, therefore, the quadratic nonlinearity can be
mimicked by a complex valued cubic one. Provided that the
FF field plays the major role the mobility coefficient con-
verges to ¢€=2 (like for cavity solitons in a cubic nonlinearity
[21]). The ratio of photon lifetimes & affects the mobility of
DCS as well [Fig. 3(c)]. The decrease of SH amplitude can
again explain the increase of the mobility coefficient & for
large SH losses (6).

Now we proceed with the full discrete model (1) starting
with a large FF coupling constant C;, which should almost
reproduce the result obtained from the continuous model (2).
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FIG. 4. The growth rate of the quasitranslational mode vs the
coupling constant for odd (solid line) and even (dashed line) bright
DCSs. E=11.2, A;==5, A,=—6, 5=1.

As in a realistic array we set C, — 0. If a DCS starts moving,
it has to jump from site to site while transforming its shape
periodically. To a certain extend this transformation can be
envisaged as a permanent transition between odd and even
solutions. Therefore, one can anticipate that DCS mobility is
directly affected by the stability properties of the respective
resting solutions, which it has to pass. Seeking for solutions
in the form u=uy+ due*” and linearizing Eq. (1) around the
stationary solution u, with respect to a small perturbation du
we calculate the eigenvalue spectra for both odd and even
DCSs. The eigenvalue with the largest real part converges to
zero for increasing coupling constant (Fig. 4). In this case the
corresponding quasitranslational mode coincides with the
neutral or translational mode in the continuous limit (C,
—o0), Thus only this mode is important for the soliton sta-
bility provided that the coupling constant is large enough.
For example a bright even solution destabilizes (A°¥*">0)
due to the growth of the quasitranslational mode (see [9]).
By contrast the odd DCS remains stable (\°%¢<0).

The system (1) lacks translational symmetry and, there-
fore, the eigenvalue of the quasitranslational mode is non-
zero. On the other side we still assume, like in the continuous
limit, that the amplitude of the quasitranslational mode de-
termines the spatial displacement from a stationary solution.
As a result using Eq. (5) we get the approximate expression
for the local velocity in the vicinity of odd (even) DCS,

V= dpAx = NOWEven Ay 4y )

where \°4(even) s the eigenvalue of the quasi-translational
mode and Ax=X—X,gq(even) 1S the shift from the DCS center.
V, is the velocity [Eq. (6)] known in first order from the
continuous model. Odd DCSs are centered at a cavity and
thus this center is located at x,4q/h=0,1,..., whereas the
even DCS is situated between sites X..,/h=0.5,1.5,....
Equation (7) describes a velocity of DCS in the vicinity of
odd and even soliton positions Xyqq,Xeven (dashed lines in Fig.
5). Then we are looking for a continuous function which
connects smoothly all this points. We use a linear combina-
tion of two sine-functions, which satisfies Eq. (7) by means
of its Taylor expansion around soliton centers. So the instan-
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FIG. 5. The instantaneous velocity V of a DCS in discrete model
(1) depending on the soliton position x. Dashed lines describe the
results of the perturbation analysis around odd (even) DCSs [Eq.
(7)]. The solid line corresponds to the continuous approximation
(8). Vj is the velocity calculated in the continuous model (2).

taneous velocity for any continuous x is approximated as
(solid line in Fig. 5),

V=N sin(2mx/h) + \* sin(4d7x/h) + Vo(q), (8)

where N~=(NCY—\evem)p/4qr, N*=(NOU 4NN p/87m; NOI,
A" are the real eigenvalues of the quasitranslational mode
of odd and even DCSs, respectively and V,(g) is the DCS
velocity in the continuous model (2). Keeping in mind that
Vo(q)=&k=E&q/ h the parameter V((q) can be easily related to
the phase shift g. The coefficients A* in Eq. (8) are math-
ematical guesses, which allow us to satisfy Eq. (7). The first
sin-term (A7) reflects the fact that stable odd and unstable
even solutions alter periodically along x. It describes effec-
tively the growth-rate range of the quasitranslational mode,
which is responsible for the soliton motion. Therefore, this
term determines the critical gradient of the holding beam,
which implies the transverse motion of the DCS. Equation
(8) represents now the velocity, which is exerted on the DCS
by the waveguide array and the phase gradient.

According to Eq. (8) moving DCSs drift into the direction
of the gradient, while performing additional oscillations
when jumping from waveguide to waveguide (see inset of
Fig. 6). Therefore it is convenient to describe the soliton
motion by an average velocity W=h/AT, where A is the lat-
tice period which is passed by the soliton during a time AT.
The second term in Eq. (6) can be neglected compared to the
first one (A\™>\*) because the eigenvalues A\°%¢, \°V°" usually
have opposite signs (Fig. 4). Then we get from Eq. (8) a
simple expression for the average velocity,

W= Vo(CI)z —(\7)? for Vo(q)2 = ()\‘)2 and W=0 else.
)

For sufficiently large coupling there is a good agreement of
the velocities obtained by a direct numerical solution of Eq.
(1) and from Eq. (9) (see, for example, C;=15 in Fig. 6). The
values W/h and V,/h in Fig. 6 represent the average number
of sites which moving DCS pass during FF photon lifetime
in the discrete and continuous models, respectively. It fol-
lows from Eq. (9) that DCS rest unless the inclination of
holding beam exceeds some critical value which corresponds
to a phase shift,
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FIG. 6. The average velocity of bright DCS W vs the scaled
phase gradient Vy=¢£k for different coupling constants. W/h and
Vo/ h represent the average number of sites which moving DCS pass
during FF photon lifetime in the discrete and continuous models,
respectively. The solid lines show the results of the analytical ap-
proach (9), whereas the dashed lines are the outcome of direct nu-
merical simulations of Eq. (1). E=11.2, A|=-5, A,=-6, 6=1. In-
set: evolution of the DCS centre for different phase gradients and
C=10.5.
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Evidently, the critical shift is proportional to the eigenvalue
difference of the respective odd and even soliton solutions. It
decreases with increasing coupling constant and becomes
zero in the continuous limit. Note that the other system pa-
rameters, like e.g. detunings, determine the mobility coeffi-
cient ¢ calculated above in model (2) (see Fig. 3). Equation
(10) describes almost exactly the critical gradient (critical
phase shift between nearest cavities) of the holding beam
provided that the respective eigenvalues are real (see C,
>10 in Figs. 4 and 7). But the analytical approximations
[Egs. (8) and (9)] cease to hold, if the influence of discrete-
ness grows too large. This happens if either the coupling gets
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FIG. 7. Critical phase shift (¢.) between adjacent sites of the
holding beam for a bright DCS [solid line: analytical approach
(10)]. E=11.2, A|=-5, Ay=-6, 5=1.
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FIG. 8. Critical phase shift (¢g.) between adjacent sites of the
holding beam for fundamental and second-order dark DCSs. Solid
lines correspond to the analytical approach (10), whereas the dashed
lines are the outcome of direct numerical simulations of Eq. (1).
Inset: FF amplitude profiles of the fundamental and second-order
dark DCSs for C;=2, E=9.8, A|=5, A,=6, §=1.

too small (continuous model ceases to be a sufficiently good
zero-order solution) or the inclination of the beam grows
such that the large induced phase difference ¢ between adja-
cent sites requires genuine discrete diffraction to be taken
into account.

This, on the other hand, provides the opportunity to use
the inclination of the holding beam as a switching parameter.
Solitons will move if the gradient exceeds the critical value,
which depends on the coupling strength (see Fig. 7), or stay
at rest otherwise. This dynamical behavior seems to be rather
general for all localized solutions. We performed a similar
analysis for dark DCSs by calculating the respective critical
phase shift between adjacent sites g of the holding beam
(Fig. 8). In the case of multistability we find fundamental
and second-order dark DCSs to coexist for the same set of
system parameters (see profiles in the inset of Fig. 8). How-
ever, respective critical angels of inclination, which force the
structures to move, are different (see Fig. 8). For a particular
set of parameters (see C;=~1.9 for fundamental and C,
~ 1.58 for 2-order solitons in Fig. 8) we also found the criti-
cal gradient g, of motion to reach zero. It is intriguing that in
spite of quite small coupling (discreteness matters) the mo-
bility of dark DCSs compares to that in the translational
symmetric continuous case. Approximation (10) confirms
this fact (solid lines in Fig. 8) and illuminates the deeper
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FIG. 9. Collisions between resting and moving dark DCSs with
parameters: ¢=0.025, C=1.1, E=9.8, A;=5, A,=6, 6=1.

066603-5



EGOROYV, PESCHEL, AND LEDERER

0.9 T T T T

qcr (Vﬂd)

FIG. 10. Critical phase shift (¢.,) between adjacent sites of the
holding beam for bright DCSs (thick solid line) and two-soliton
bound state (thin solid line). The thin dashed line is the empirical
approximation ¢g=s/Cy. Inset: profile of the stable two-soliton
bound state, E=11.2, A;=-5, A,=-6, 5=1.

reason for this peculiar behavior. For these particular param-
eter values the eigenvalues of the quasitranslational modes of
odd and even DCSs cross simultaneously zero (\°dd=Q,
\¥"=0). Hence, the effective barrier vanishes and DCSs
become as mobile as their continuous counterparts.

IV. INTERACTION OF DISCRETE CAVITY SOLITONS

As we have pointed out the mobility of DCSs is very
sensitive to the tilt of the holding beam, in particular, close to
the critical angle. In case of multistability coexisting struc-
tures usually have different critical angles and move with
different velocities. In what follows we always assume that
various types of coexisting DCSs have already been excited
by initially applying appropriately shaped beams at respec-
tive positions. We now concentrate on the mobility and the
interaction of theses DCSs. For example the second-order
dark DCS is more mobile than the fundamental one (see Fig.
8). It means that there is an interval of phase gradients, for
which moving and resting DCSs exist simultaneously. This
opens up the way for provoking various scenarios of soliton
collisions. First we examined the interaction between mov-
ing second-order and resting fundamental dark solitons pro-
vided that an appropriate inclination of the holding beam has
been applied. In this case the moving dark DCS erases the
stationary one in the course of interaction (Fig. 9). It takes
several hundred photon lifetimes to realize such soliton
switching for an initial soliton separation of about 20 cavity
spacings. This is a typical example for an inelastic interac-
tion characteristic for dissipative systems.

However, others scenarios of soliton switching can be ob-
served too. To prove this we have studied collision of bright
localized structures for rather small coupling. Although the
analytical result (10) is not valid in this domain (Fig. 10) we
empirically found the critical phase gradient to be propor-
tional to the inverse FF coupling (¢=s/C,;, where s is a
constant). Bright DCSs can form a stable two-soliton bound
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FIG. 11. Collisions between resting and moving bright DCSs;
(a) ¢=0.26 and (b) ¢g=0.28; other parameters: C=3.5, E=11.2, A,
=-5, A,=-6, o=1.

state in that extremely discrete case of small coupling (see
profile in the inset of Fig. 10). Note that the bound state of
CSs does not exist in the continuous model (2) for this set of
system parameters. Therefore it transforms into the funda-
mental one if the coupling constant exceeds some maximal
value (C;=4.2). The numerical simulations of Eq. (1) show
that the double-hump localized solution breaks up to a pair
of moving DCSs provided that the inclination of the holding
beam is large enough. The corresponding critical value of the
phase gradient exceeds the critical gradient of the single
DCS up to its sudden drop close to the limiting point of the
double-hump soliton existence (C; <4.2, Fig. 10). Therefore
for some inclination the double-hump DCS rests while the
single-hump DCS already moves (shaded area in inset of
Fig. 10). According to our simulations there are two sce-
narios of bright DCS switching depending on the phase gra-
dient. In the first one the resting structure integrates the mov-
ing soliton resulting in the formation of the multihump
pattern with an additional peak [Fig. 11(a)]. Another case can
be observed for a slightly larger phase gradient near the criti-
cal value for the double-hump structure. The resting soliton
now absorbs the moving one during interaction [Fig. 11(b)].

V. CONCLUSION

In conclusion, we have analyzed the mobility properties
of different types of solitons in an array of coupled cavities
under the influence of an inclined holding beam, both nu-
merically and analytically. Close to the continuous limit the
critical phase gradient that forces solitons to move is almost
exactly described by a simple analytical expression (10). In
the case of multistability coexisting DCSs move with differ-
ent velocities. Resting and moving structures allow for vari-
ous types of interactions.
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